
 MATHEMATICS OF COMPUTATION
 VOLUME 48, NUMBER 177
 JANUARY 1987, PAGES 243-264
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 of Factorization
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 To Doniel Shanks on his 70th birthday

 Abstract. Since 1974, several algorithms have been developed that attempt to factor a large
 number N by doing extensive computations module N and occasionally taking GCDs with

 N. These began with Pollard's p - 1 and Monte Carlo methods. More recently, Williams
 published a p + 1 method, and Lenstra discovered an elliptic curve method (ECM). We
 present ways to speed all of these. One improvement uses two tables during the second phases

 of p ? 1 and ECM, looking for a match. Polynomial preconditioning lets us search a fixed
 table of size n with n/2 + o(n) multiplications. A parametrization of elliptic curves lets Step
 1 of ECM compute the x-coordinate of nP from that of P in about 9.3 1og2 n multiplications
 for arbitrary P.

 1. Introduction. In 1974 and 1975, J. M. Pollard introduced two algorithms that

 are remarkable for their ability to locate most factors of moderate size (up to about

 12 digits) of huge numbers, with many larger successes. Previously, using trial

 division, the practical limit was about 8 digits. H. C. Williams and H. W. Lenstra, Jr.

 have since announced related methods. The author is routinely finding factors of

 around 17 digits with Lenstra's method.

 We let [xJ and [xl designate the greatest integer not exceeding x and the least
 integer not less than x, respectively. The greatest common divisor (GCD) of two

 integers m and n is designated by GCD(m, n). This GCD is said to be nontrivial if

 it is not equal to 1. The number of primes less than or equal to n is designated by

 v(n). The notation p(n) designates Euler's totient function. If a/b and c/d are
 rational numbers and N is an integer, the notation a/b c/d mod N means

 ad- bcmodNandGCD(bd,N)= 1.

 The notation (xI,. , X.n) .- (el, .. ., en) designates a parallel assignment state-
 ment. The xi must be distinct variables. To execute it, evaluate all expressions on the

 right. Then assign the value of each ei to the corresponding xi.
 Define the Fibonacci numbers Fn and Lucas numbers Ln for n >a 0 by

 (1 .1) /F0=No- F1= 1, = n+2 = n+ 1 + Ln? ,

 Suppose N is an odd composite number to be factored, and p is an unknown

 prime factor of N. Each algorithm does extensive computations modulo N and

 occasionally takes a GCD with N, hoping thereby to find p. Although p is

 Received December 16, 1985; revised July 15, 1986.

 1980 Mathematics Subject Classification. Primary 10A25.

 Key words and phrases. Factorization, polynomial evaluation, elliptic curves, Lucas functions.

 ?c1987 American Mathematical Society

 0025-5718/87 $1.00 + $.25 per page

 243

This content downloaded from 
������������104.129.198.213 on Wed, 08 Dec 2021 17:38:36 UTC������������ 

All use subject to https://about.jstor.org/terms



 244 PETER L. MONTGOMERY

 unknown, the computations are also taking place modulo p; a GCD "succeeds"

 when an intermediate result is zero modulo p but nonzero modulo N.

 Pollard observed that the cost of each GCD with N can be reduced essentially to

 that of a multiplication modulo N, since

 (1.2) p IGCD(xy mod N, N) if and only if p I GCD(x, N) or p I GCD(y, N).
 By repeatedly using this equation, one can trade 100 (say) GCDs with N for 99

 multiplications modulo N and one GCD with N. This may cause multiple factors of

 N to appear at once, but that danger can be overcome by backtracking when a

 nontrivial GCD is found. Therefore, it is convenient to merge the multiplications

 modulo N and the GCDs with N into one count when comparing versions of an
 algorithm.

 The Monte Carlo method [22] iterates a function modulo N while looking for a

 duplicate modulo p; it takes O(rpj) comparisons and function evaluations, and
 quickly locates factors under 10 digits. By preconditioning the coefficients of a cubic

 polynomial, we reduce the cost of each comparison (i.e., GCD) to two-thirds the cost

 of a multiplication modulo N, for a 10% gain in speed. The cost of each comparison
 drops asymptotically to half a multiplication modulo N using higher-degree poly-
 nomials.

 The p - 1 [21], p + 1 [33], and Elliptic Curve (ECM) [15], [16] methods each
 operate in an Abelian group G; the choice of G distinguishes the methods. In each

 case, although the elements of G are defined modulo p where p is not explicitly
 known, the elements can be computed via arithmetic modulo N. For example, the

 p - 1 method uses the multiplicative group of nonzero elements of GF(p), and
 these computations can be done in the ring ZN of integers modulo N. Each method

 selects an element a E G and computes b = aR where R is a positive integer
 divisible by all small primes. Then it assumes bS = 1 where s is not too large; the
 problem is to find s. The usual search technique uses one group operation to

 compute each successive bS from the previous such value, but most such group

 operations can be eliminated by selecting an integer w near the square root of our

 search limit and writing s = vw - u, where 0 < u < w. Then bS = 1 if and only if
 bvW = bu. The values of bvW = (bW)v and bU can be obtained through table look-ups.
 If each group operation requires one multiplication, this cuts the search time almost

 in half. By instead testing GCD(f(vw) - f(u), N) for suitable f, we can test
 multiple values of s at once, cutting the search time almost in half again.

 When factoring a large integer, the best general approach may be to use trial

 division to find small prime factors, apply Pollard-like algorithms to find prime

 factors of moderate size, and apply more sophisticated algorithms [9], [10], [12], [20],
 [24], [25], [28], [30] if the cofactor is not prime and not too large.

 Section 10 describes the implementation of these algorithms and their use in
 obtaining new factors of Fibonacci and Lucas numbers.

 2. The Monte Carlo Method of Factoring. Let F be a function from a finite set S
 to itself. Select x0 E S. Define

 (2.1) xi+1 = F(x,) (i > 0).
 Since S is finite, there exist m > 0 and n > 1 such that xm+n = Xm. By (2.1)

 Xi+kn = Xi (i > m and k > 1).
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 SPEEDING THE POLLARD AND ELLIPTIC CURVE METHODS OF FACTORIZATION 245

 Following [3], we call the least such n and m the period and the length of the

 nonperiodic segment of the sequence xi. If F is selected randomly, then [13, Exercise
 3.1-12]

 (2.2) E(m) = E(n - 1) = ( v S |/8) 1/2 + 0 (1).

 Floyd [13, Exercise 3.1-6] observed that one can find an instance where xi = xj
 and i # j by testing whether X2i = Xi for i = 1, 2, 3 .... Indeed, i can be the least
 nonzero multiple of n not less than m, so i < m + n. Each iteration of Floyd's

 algorithm requires three evaluations of F to replace (xi, x21) by (xi+1, X21+2), and
 one comparison of two elements of S.

 Pollard's Monte Carlo method [22] of factoring an integer N computes

 (2.3) Fxi+ 1 = F xl) mod N,

 where F is a suitable polynomial function of degree at least 2 and x0 is arbitrary.
 Unless otherwise stated, we will assume

 (2.4) F(x) = x2 + C (c # O.-2).

 If p is a prime factor of N, then (2.3) holds with N replaced by p, so (2.1) applies

 with S = {0, 1, . . ., p - 1}. Although the sequence has been defined modulo N, we

 can think of it as being defined modulo p. We can apply Floyd's algorithm,

 searching for i such that GCD(x2, - xi, N) > 1. When x2i xl mod p, we will
 discover the factor p of N (unless multiple factors of N appear at once). By (2.2),

 this will usually occur in O(r/f) iterations if F behaves like a random function.

 3. Brent's Improvement to Monte Carlo. The Monte Carlo algorithm spends 75%

 of its time evaluating F. Although we usually cannot afford to store all values of xi,
 the cost of the algorithm would drop by 25% if these values did not need to be

 recomputed.

 In 1980, Brent [3] published a variation that computes each x, only once and uses

 O(log N) storage. He computes GCD(xi - xj, N) for j = 1, 3,7,15,... and
 3(j + 1)/2 < i < 2j + 1. As in Pollard's version of the algorithm, the cost of each
 GCD is essentially the cost of one multiplication modulo N. Brent shows that his

 method is 24% faster than the original algorithm, on average.

 3.1. Reducing the Cost of a GCD in Monte Carlo. Equation (1.2) reduces the cost of

 each GCD to the cost of a multiplication modulo N. We can further reduce that

 cost, and speed Brent's version of the Monte Carlo algorithm by 14%.

 Let test xi against xj mean to test whether GCD(xi - xj, N) is nontrivial,
 perhaps using (1.2). Brent's method tests xi against x1 where j is fixed as i varies
 over several consecutive integers. For example, Brent tests xi against x63 for
 96 < i < 127. We could instead test xi against xj for i = 98,101,104,..., 128 and
 63 < j < 65. The latter scheme will uncover a nontrivial GCD whenever Brent's
 scheme uncovers one, possibly two function evaluations later. Although the new

 scheme makes 33 comparisons rather than 32, we claim these comparisons collec-

 tively require fewer than 32 multiplications modulo N.
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 246 PETER L. MONTGOMERY

 Let T be a set of integers modulo N, not necessarily distinct (here T=
 { x63, x64, x65 }). Let g be the polynomial defined by

 (3.1.1) gg(x) = H (x - t) mod N.
 teT

 If p is prime, then p GCD(g(x), N) if and only if p IGCD(x - t, N) for some
 t e T. When ITj = 3, three multiplications modulo N suffice to compute the
 coefficients of g. Another multiplication lets us write g as

 g(x) = (x + aj)(x2 + a2) + a3 = (x + a,)(F(x) - c + a2) + a3

 for some constants a1, a2, a3. Set a4 = a2 - c to obtain

 g(xi) = (x, + ? l)(x+? + ?a4) + a3.

 Since xi+1 can be assumed known (except x128 and x129), each block of three

 comparisons requires only one multiplication modulo N to evaluate g(x,), and one
 more for the GCD. The preconditioning used four multiplications modulo N, so we

 have found a way to do the 33 comparisons using 4 + 2 - 11 + 2 = 28 multipli-

 cations modulo N. As the number of consecutive terms being compared against one

 x, grows, the asymptotic cost of a comparison drops to two-thirds of the cost of a
 multiplication modulo N. Since Brent's method uses between one-third and one-half

 as many comparisons as function evaluations, its overall cost drops by a fraction

 between 1/12 and 1/9.

 This construction can be generalized. Winograd [2, pp. 192-194], [35] shows how

 to precondition a monic polynomial g of degree 2k - 1 so one can evaluate g(x) in

 2k - 1 multiplications if x, x , X X are known. The preconditioning uses
 only addition, subtraction, and multiplication, so it can be done modulo N. Write

 (3.1.2) g(X) = gi(X)(X2k-? +) ?+ 2(),

 where g1 and g2 are monic polynomials of degree 2k-1 - 1 and a is a constant.

 Apply the scheme recursively to g1 and g2. The result follows by induction on k.

 Define

 F?(x) = X, FJ(x) = F(Fj-'(x)), j > 0.

 Then FJ is a monic polynomial of degree 2J, and FJ(x,) = xi+,. Winograd's
 construction is equally valid if we replace x2k1 by Fk-l(x) in (3.1.2). Using k = 3,
 one can do seven comparisons at the cost of four multiplications modulo N (plus

 preconditioning), cutting between 3/28 and 1/7 of the time from Brent's method.

 As k -x o, we cut Brent's time about 14%. However, it is of little benefit to use high
 values of k, because ECM soon becomes superior.

 If F(x) = X2 + c and k = 2, then we can precondition with three multiplications

 modulo N if T = { t1, t2, t3 } and F(t1) is known. Let

 a1 = t2 + t3, a2= a1 + t, a3= at? + t2t3-c, a4= al(F(t) + a3).
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 SPEEDING THE POLLARD AND ELLIPTIC CURVE METHODS OF FACTORIZATION 247

 Then

 (x - tl)(X- t2)(X- t3) = (x -a2)(F(x) + a3) + a4-

 3.2. When F(x) 0 X2 + c. If deg F > 2, the above analysis fails in two ways. We

 may no longer have x2 and other monic polynomials of degrees 2,4,8,... already

 evaluated. However, as (10.2.1) illustrates, we may be able to change F slightly so

 that these are available.

 The more important difference is the cost of evaluating F. In Section 10.2, we will

 need between 20 and 40 multiplications modulo N to evaluate F at a point, so the

 relative costs of a comparison and of a function evaluation will change significantly.

 Even if we halve the cost of a comparison, the improvement in algorithm perfor-

 mance will be slight. Instead, we should invest in more comparisons in hopes the

 algorithm will terminate earlier and will therefore require fewer function evaluations.

 When deg F > 2, Brent [4] modifies his method to test xi against x1 for j < i <
 2j + 1 and j = 0, 1,3,7, 15,.... In the worst case, where Xj+2 = xO for some
 j -2 - 1, this version of Brent's method requires almost three times the minimum

 number of function evaluations before discovering x3j+3 = x2j+l.
 Sedgewick and Szymanski [27] present a method that can be applied when the cost

 of evaluating F is high. They maintain a table, holding up to M pairs (j, x,), and a

 look-up function telling whether a given x is equal to xj for some pair (j, xj) in the
 table. We can represent the table by a monic polynomial g of degree M, with table

 look-up corresponding to testing GCD(g(x), N). They provide worst-cost estimates

 dependent upon the costs of evaluating F, of table look-up, and of changing table

 contents (preconditioning). They say M should be even but always include (0, x0) in
 the table; we can omit that pair without affecting asymptotic cost, and use a

 polynomial of maximum degree M - 1.

 A generalization of Brent's scheme [25, p. 296] selects a positive integer h and a

 ratio r > 1. Select an increasing sequence { ak } k=O for which lim ak + 1/ak = r. For
 k > h, test

 x, against xi (j = ak-1, ak-2,. ak-h; ak-l < i < ak)-

 As in [3], this algorithm always finds the minimum period, not a multiple thereof.

 When the length of the nonperiodic segment is large but the period is small

 (xj = xj+ where j = ak + 1), this scheme can require r times the minimum
 number of function evaluations. When the period is large but the length of the

 nonperiodic segment is small (xj = x0 where j = ak - ak-h + 1), it can require
 1 + r/(rh - 1) times the minimum number of function evaluations. To minimize

 worst-case performance, solve r = 1 + r/(rh - 1) for r. Call the result rworst.
 An analysis similar to that in [3, Section 4] shows that we need

 Ir)= (r 2h -r h?1 )(r -1) +2:I
 Ih(r) 2rh(rh -1) lnr 2

 times the minimum number of function evaluations, on average. Let ravg be the value

 of r minimizing Ih(r), for a fixed h. Table 1 shows the approximate values of ravg

 and rworst for h < 5.
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 248 PETER L. MONTGOMERY

 TABLE 1

 Values of ravg and worst for low h

 h ravg worst 'h (ravg) Ih ( rworst

 1 2.4771 2.6180 1.5367 1.5390

 2 1.8281 1.8019 1.2740 1.2743

 3 1.5874 1.5590 1.1885 1.1890

 4 1.4607 1.4384 1.1455 1.1459

 5 1.3817 1.3650 1.1193 1.1196

 The values for Ih(ravg) are approximately 1 + 0.6/h. Let the cost of each test be T

 function evaluations. The major cost of the algorithm is (1 + Th)Ih(ravg) times the
 minimum number of function evaluations. This is minimized when h i6/T.

 The application in Subsection 10.2 requires about 20 multiplications per function

 evaluation, and each test will take about 2/3 multiplication (tentatively assuming

 one or more cubic polynomials is used), so T = 1/30. We find h 1 8, or h = 4.

 The expected cost is (1 + 4/30)(1.1455) = 1.298 times the minimum number of

 function evaluations. It is convenient to use instead h = 3 and ak= Fk, the kth

 Fibonacci number, so r = (v5 + 1)/2 - 1.618. The expected cost is then
 (1 + 3/30)(1.1890) 1.308 times the minimum, a 1% degradation. The corre-

 sponding figure for Brent's method (with T = 1/20, h = 1, r = 2) is (1.05)(1.5820)

 - 1.661.

 3.3. Description of Algorithms. Algorithm MCF tries to factor a composite integer

 N by this technique, using F(x) = G(x2) for some polynomial G. It works in

 conjunction with algorithms TEST (given an integer T, test whether GCD(T, N) > 1)
 and CHEK (compute cofactor and backtrack when a divisor of N is found). Global

 constant cma is one more than the maximum number of times to apply (1.2) before
 taking a GCD. Global array C has subscripts 1 to cmS,, and is used to save recent
 arguments to TEST for possible backtracking. Global variable c is an integer

 between 0 and cmax, telling how many elements of C are in use. Inputs to MCF are

 N, G, and x0. All arithmetic involving t1, t2, w, x, xO, y, z, a1, a2, a3, and a4 is
 modulo N.

 ALGORITHM MCF

 Z +-G( X2), Y + Z 2, (c,e, f, it1, t2, X) +-(0,1, 1, 1 z, x0,G(y))
 repeat {precondition again)

 { e and f = i are consecutive Fibonacci numbers)

 {Z Xf, ti = Xe t2 = Xf fem X xi+l, Y Z2)
 al t? + t2, ai2 ' -a1 + Z, 3 a -a1z + t1t2, a4 - al(y + a3)
 (e, f, t1, t2) -- (f, e + f, z, t1)

 repeat {main loop, executed up to f - e times)

 ( =-xi+= e < i < f}
 w +- x - a2, y x2

 call TEST ((y + a3)W + a4)

 {argument to TEST equals (x - tl)(x - t2)(x - z)}
 x +- G(y), i i + 1

 until i = f or N = 1

 z <- w + a2 {recover last x}
 until N = 1 {or unsuccessful termination). [1
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 SPEEDING THE POLLARD AND ELLIPTIC CURVE METHODS OF FACTORIZATION 249

 ALGORITHM TEST (T)

 chic+ 1

 C t- TmodN

 if C = Cmax then call CHEK. El

 ALGORITHM CHEK

 if c > 0 and GCD(c=1 Ci mod N, N) > 1 then
 {backtrack, compute cofactor, check for multiple or repeated factors}

 repeat

 d +- N, k +- 0
 for i := 1 step 1 to c do

 if GCD(Ci, N) > 1 then
 if GCD(Ci, d) > 1 then

 d <- GCD(C,, d)
 end if

 key- k +1, Ck - Ci
 end if

 end for

 if k > 0 then

 N +- N/d, c +- k
 output d {this need not be prime, but we tried}

 end if

 until k = 0

 if N = 1 then

 {nothing to do}

 else if N passes a primality test then

 output N

 N- 1

 else {cofactor is composite}

 reduce intermediate results modulo N

 end if

 end if

 co-O. E

 4. The p - 1 Method of Factoring. The p - 1 method of factoring selects an
 integer a coprime to N (but not a = +1). Step 1 of the algorithm computes

 bI a R mod N, where R > 0 is divisible by all prime powers below a bound B1. This

 takes 0(log R) = O(B1) operations modulo N using standard methods of expo-

 nentiation [13, p. 441ff.]. It is unnecessary to compute R explicitly. If p - lIR, then

 p - b-1 by Fermat's theorem, so p IGCD(b - 1, N). Let d = GCD(b - 1, N). If
 1 < d < N, then d is a proper factor of N. If d = N, then B1 is too high; reduce the
 value of R and retry, or try a different value of a.

 Step 1 of the algorithm fails if d = 1. One strategy abandons the algorithm.

 Another increases B1. Usually one selects B2 >> B1 and assumes p - 1 = Qs, where
 Q-R, and where s is a prime between B1 and B2. The problem is to find s, and
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 250 PETER L. MONTGOMERY

 hence p. If

 (4.1) Tvbs - 1 aRS modN,

 then p ITs by Fermat's theorem, since p - li Rs.
 The standard continuation of the p - 1 method separately tests each prime s

 between B1 and B2 to see if GCD(Ts, N) > 1. Let sj denote the jth prime. Since the

 difference sj I - sj between two consecutive primes is known to be small (it seems
 not to exceed O((logsj)2)), the values of bs? -sT mod N can be stored in a table.
 Then bs? l- bsibs+lh -si mod N for j > r(BI) + 1. The standard continuation re-
 quires

 o((log B2) 2) + O(logSi(B1)+1) + 2(7T(B2) - 7T(Bj))

 multiplications modulo N and GCDs with N. If B2 >> B1, this is approximately

 2,g(B2).

 Pollard also suggested a Fast Fourier Transform (FFT) continuation to the p - 1

 method. The FFT continuation partitions the interval (B1, B2) into several smaller

 intervals, each of length w. The coefficients of

 h (x) =Hn(x - bu) mod N (O < u < w and GCD(u,w) = 1)

 can be computed with O((p(w)(log (p(w))2) operations modulo N, by recursively
 writing the polynomial as a product of two monic polynomials of degrees as close as

 possible and using fast algorithms for polynomial multiplication [1, p. 269]. A

 polynomial of degree n can be evaluated at n successive terms of a geometric

 progression in O(n log n) steps [1, Exercise 8.27], [21, p. 523]. Let vI = [ B1/w l and
 V2= [B2/wl. Use this to evaluate GCD(h(bvw), N) for v1 < v < v2. If s = vw - u
 where 0 < u < w and VI < v < v2, then any divisor of GCD(bs - 1, N) will divide
 GCD(bVW - bu, N) and hence GCD(h(bvw), N). Selecting w B d2 gives good
 asymptotic performance, but Pollard expressed uncertainty as to when this becomes

 practical.

 4.1. Reducing the Cost of the Standard Continuation. By mixing ideas in Pollard's

 two continuations of the p - 1 algorithm, one can improve the performance of the

 standard continuation. As in the FFT continuation, pick an integer w near vB2. Let

 v = [B1/wl and v2 = [B2/wl . Precompute the values of bumod N for 0 < u < w

 and the values of bYW mod N for v1 < v < v2. This investment takes O( 'B2 ) multi-
 plications modulo N. For each prime s = vw - u between B1 and B2, replace (4.1)

 by

 (4.1.1) -Ts bvw- bumodN.

 Then GCD(Ts, N) = GCD(bs - 1, N). This resembles Shanks's "baby steps" and
 "giant steps" [28, p. 419]. The advantage over (4.1) is that no new multiplication

 appears in (4.1.1). The 2(,r(B2) - T(Bl)) + o(7T(B2)) multiplications modulo N and
 GCDs with N required by the standard continuation have been replaced by

 T(B2) - T(BI) + O(FB2) such computations. For large B1 and B2, this is a 50%
 improvement.
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 SPEEDING THE POLLARD AND ELLIPTIC CURVE METHODS OF FACTORIZATION 251

 On the other hand, memory requirements have grown from O((log B2)2) to

 O(B_2) values modulo N. We can offset some of this increase by storing bU only
 where GCD(u, w) = 1. If the primes are processed in ascending order, then the

 values of boW can be computed as needed and need not be stored. Pollard [23] points

 out that we can reduce memory requirements further by using a lower value of w.

 One can do almost 50% better by testing two primes at once. Change (4.1.1) to

 (4.1.2) TS f(vw) -f(u) mod N
 where f(n) = bn2 mod N (other choices for f will be presented later). Then

 1. Values of f(n) can'be efficiently evaluated for successive n in an arithmetic

 progression.

 2. If p - 1 = Qs where QIR, then f(m) f(n) mod p whenever m + n mod s.
 Property 1 holds if f(n) b mod N for any integer-valued polynomial func-

 tion g. Suppose degg = d and we need f(x), f(x + h), f(x + 2h), .... Define

 (4.1.3) f gd(n) =g(n)
 \ g(n)= gi1(n + h)-g,+1(n) (i= d-1, d-2, ... .,0).

 Then deggi = i for 0 < i < d. We keep track of bg,(n) mod N for 0 < i < d, as n
 ranges over x, x + h,.... Since go is constant, only d multiplications modulo N are
 required when replacing n by n + h. This is a variation of an algorithm [13, p. 469]

 for tabulating the values of a polynomial at successive terms of an arithmetic

 progression, using only addition after the first few steps.

 Property 2 explains the choice g(n) = n2. The statement is easily verified, since

 sjm ? nm2- n2 implies pibs - 1bm2 -b

 To utilize these properties, we find pairs (v, u) such that every prime within the

 interval (B1, B2) is represented as vw + u for some pair (v, u) in our collection. We

 intend to compute the corresponding values of GCD(f(vw) - f(u), N) after obtain-

 ing f (vw) and f(u) through table look-ups. Since our table sizes will be small, we
 need restrictions on u and v. The restrictions might be

 I U |I< um.vc

 l = Blw| < v < |[B2/wl =V2,

 where umax > w/2 is selected in advance. The time to build the tables of f (vw) and
 f(u) will be o(V2 - 01) + O(Umax). Provided both V2 - v1 and umax are much less
 than 77(B2) - T(B1), the primary cost of the algorithm will be proportional to the
 number of pairs (v, u) required, so we want both vw ? u to be primes as often as

 possible.

 Before stating an algorithm for obtaining the (v, u) pairs, we give a numerical

 example. Consider B1 = 100, B2 = 200, w = 30, umax = 30. The 21 primes between
 100 and 200 are 120 + 19, 120 + 17, 120 + 11, 120 + 7, 150 + 1, 180 + 17, 180 +

 13, 180 + 1, 107, 157, 173, 191, 199. The last five primes can each be paired with a
 composite vw + u, giving us 13 pairs. After the tables of values of f (vw) and f(u)
 have been built, only 13 more multiplications modulo N and GCDs with N are

 required.

 4.2. A Pairing Algorithm. These pairings were obtained in a straightforward way.

 If s1 = vw-u and sj = VW + u are two primes between B1 and B2, then s, + s=
 2vw is a multiple of 2w. Conversely, if s, + sj is a multiple of 2w, then s, = vw - u
 and s1 = VW + u for some v and u. Therefore, it suffices to look at residue classes

This content downloaded from 
������������104.129.198.213 on Wed, 08 Dec 2021 17:38:36 UTC������������ 

All use subject to https://about.jstor.org/terms



 252 PETER L. MONTGOMERY

 modulo 2w. We loop through each pair of complementary residue classes, pairing

 each as yet unpaired prime with the least possible mate (if any) from the other class.

 We know B1/w < v < B2/w, but must verify 0 < u < umax.
 We would like the pairs (v, u) to be output in ascending order by v, so only one

 value of f (vw) need be stored at a time. Instead, we will assume storage is available

 for 2L - 1 successive values of f(vw), where L > [ umax/w 1. Algorithm PAIR uses a
 separate queue for each residue class modulo 2w. A queue is a data structure for

 which all insertions are made at one end (the rear) and all deletions are made at the

 other end (the front). If jqj < w, then queue Qq contains (in ascending order) the
 values of a such that 2aw + q is prime but no pair (v, u) with 2aw + q = vw + u

 has been output. All members of Qq are between amin and amin + L - 1 inclusive.
 Algorithm PAIR requires a table of primes in ascending order. The time required by

 the algorithm is 0(QT(B2) - iT(Bl)) + O((B2 - B1)/(L - [umax/wi)) + O(Umax).

 ALGORITHM PAIR

 amin -(Bl + w)/2w]
 set Qq to empty state for each q satisfying Ijq < w
 while more primes between B1 and B2 do

 get next prime s, where B, < s < B2
 a <- [(s + w)/2w|
 while a > amin + L do {if storage for tables of f(vw) exceeded}

 amin +- amin + L - rumax/wI
 for all q satisfying IqI < w do

 for all a' E Qq with a' < amin do

 remove a' from Qq

 output the pair (2a', jqj)
 end for

 end for

 end while

 q -- s - 2aw {so s = 2aw + q}
 {look for mate in Q-q or save in Qq}

 repeat

 if Q q is nonempty then

 remove the front element a' of Q q

 {we have found two primes 2aw + q and 2a'w - q }

 u +- w(a - a') + q
 if u>u max then

 output the pair (2a', Iqi)

 else

 output the pair (a + a', u)

 end if

 else

 insert a at the rear of Qq

 u +- 0 {force exit from loop)
 end if

 until u < Umax

 end while {end of loop over primes)
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 for all q satisfying IqI < w do {empty the queues}
 while Qq is nonempty do

 remove front element a' of Qq

 output the pair (2a', IqI)
 end while

 end for. E1

 The queues can be implemented as linked lists. It is a property of the algorithm
 that Qq and Q-q will not both be nonempty at once. If all prime divisors of 2w are

 below B1, then Qq will always be empty if GCD(q, 2w) > 1. Therefore, the total size
 of the queues will never exceed L(p(2w)/2. This can be reduced to n(p(2w)/2 where

 u = [umj/w 1 by modifying the algorithm to remove a' from Qq before inserting a
 in Qq if a' < a - n, thereby assuring Qq will never have over n members. Another

 implementation of the queues keeps a bit pattern for each Qq1 in which bit b is set to
 1 if and only if amin + b E Qq1 for 0 < b < L. The bit patterns must be shifted
 when amin advances.

 Each pair (v, u) output by Algorithm PAIR satisfies

 (4.2.1) 2amin < v < 2(a~n-in+ L-1) and 0 < u < uma.
 It is straightforward to extend the algorithm to maintain tables of f(u) and f(vw)
 for all u and v satisfying (4.2.1). The operation "output the pair (v, u)" will

 translate into "call TEST(f(vw) - f(u)); if N = 1 then return." Here TEST is as
 described in Subsection 3.3. Also initialize c <- 0 at the start of PAIR, and call
 CHEK at its end. If several values of N are to be factored using the same B1, B2, w,

 L, and uma, then Algorithm PAIR need be run only once.
 Table 2 shows the number of pairs output by this algorithm when run with

 B1 = 105, B2 = 106 for various values of uma and w. Since there are 68,906 primes
 in this interval, a lower bound on the number of pairs is 34,453.

 We seem to do better if 2w is divisible by several low primes. This is reasonable

 since if vw - u is prime, then no prime dividing 2w can divide vw + u, increasing
 the chance the latter is prime.

 TABLE 2

 Number of pairs generated by Algorithm PAIR

 w 1000 1024 1155 1800 2310

 cP(w) 400 512 480 480 480

 umax = [w/21 62183 63605 56150 59072 56257
 umax = w 57189 59323 50185 53317 50246
 umax = 2w 50916 53276 44417 47038 44437
 uma = 3w 47140 49356 41642 43695 41623
 U max = 4w 44784 46799 39925 41657 40062
 umax = 6w 41740 43507 38142 39408 38228
 umax = 8w 40047 41602 37216 38168 37324
 U max = 12w 38213 39386 36288 36974 36446
 uma = 16w 37282 38238 35843 36379 36067
 uma = 24w 36448 37141 35492 35933 35828
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 5. Lucas Functions. Let P be an element of a commutative ring with identity

 (normally the integers modulo N). For each integer n, define the Lucas functions

 Un = Un(P) and Vn = Vn(P)by

 UO = ?, U1 = 1, Un+1 = PUn Un-1

 VJ = 2, V1 = P, Vn+1 = PVn- Vn1.

 Also define LA = S(P) = p2 - 4. If x2 - Px + 1 = (x - a)(x - /), and if divi-

 sion by a - / is allowed, then

 Un(P) = (an - /3n)/(a - /3), Vn(P) = an + fifni P) = (a - /)2
 These functions satisfy many identities [14], [33] (the argument P will be omitted

 when it is clear from the context):

 U-n Un, Vn =Vn, U2n = UnVn, V2n Vn2 - 2, Vn2 - AUn2 = 4,
 (5.1) 2Um+n = UmVn + VmUn, 2Vm4n =VmVn + AUmUn,

 (5.2) VM + n = VmVn Vrn-n
 Vmn(P) = Vm(Vn(p)),

 (5.3) (Vm+n - 2)(Vm-n - 2) = (Vm -n)

 THEOREM 1. If p is an odd prime and P is an integer and the Legendre symbol

 (A(P)/p) = E 0, then Vm(P) -Vn(P) mod p whenever p - Elm + n.

 Proof. If m = 0 or n = 0, see [14, p. 423]. Otherwise use Eq. (5.3). E

 One can compute Un(P) and Vn(P) from n and P with O(log n) operations [18],
 [33].

 In Subsection 4.1, we used f(n) = bn mod N. Another acceptable selection is

 f(n) = bn + b-n Vn(b + b-1) mod N.

 This is well defined since GCD(b, N) = 1. This selection of f requires only one

 multiplication modulo N to compute each successive value of f(vw) or f(u), by

 (5.2). It also leads to compatibility with the p + 1 method of factoring.

 6. The p + 1 Method of Factoring. Williams's p + 1 method of factoring [33]

 assumes N is an integer to be factored and p is an unknown prime factor of N for

 which p + 1 has only small prime factors. Pick an integer P0 other than 0, ? 1, + 2.
 As in the p - 1 method, pick bounds 0 << B1 << B2. Compute P' VR(PO) mod N,

 where R > 0 is divisible by all prime powers below B1. If GCD(P' - 2, N) = 1,

 then Step 1 of the p + 1 method has been unsuccessful.

 The hope is that P0 = a + a-1 for some a E GF(p2) - GF(p); this will hold if

 A (PO) = P-2 - 4 is a quadratic nonresidue modulo p. In that case, a and a-1 will be
 algebraic conjugates, implying au = 1. The multiplicative subgroup of GF( p2)

 satisfying this equation has order p + 1, so this method succeeds if 4(PO) is a
 quadratic nonresidue and p + 1 is highly composite.

 Williams gives a continuation similar to the standard continuation of the p - 1

 method and requiring about 5(,r(B2) - rT(Bl)) multiplications modulo N and GCDs
 with N. Instead, by Theorem 1, if E = ((Po)/p), and p - E = Qs where QIR, then

 Vm(P ) VmR(PO) VnRR(PO) Vn(P') modp
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 whenever s divides m + n. We can now apply the methods of Subsection 4.1, using

 f(n) = Vn(P') mod N.
 If the p - 1 and p + 1 algorithms are run on the same N, we hope e = -1 in the

 p + 1 method, but that condition seems impossible to check beforehand. Should

 E = +1, then the p + 1 method finds p when the p - 1 method would have

 succeeded. Observe that the algorithm may be a p - 1 method for some primes
 dividing N and a p + 1 method for others; it is really a p - (zA/p) method.

 Therefore [33, p. 229], the p + 1 algorithm must normally be tried using multiple

 values of P0, although Algorithm PAIR need be done only once. If little is known

 about the factors of N. I suggest P0 2/7 mod N, so that LA - 192/49 mod N
 and (L/p) = (-3/p) for all p > 7. Then p - (zA/p) will be divisible by 6. This
 should find p if 31p - 1 when p - 1 is highly composite, or if 31p + 1 when p + 1
 is highly composite. An alternate selection is P0 6/5 mod N, in which case

 A - 64/25 mod N, and p - (A/p) is divisible by 4. In practice, one can try p + 1
 once or twice before switching to ECM.

 7. Elliptic Curves. Let K be a field of characteristic other than 2 or 3. An elliptic

 curve over K is the set of points (x, y) E K X K satisfying the Weierstrass equation

 (7.1) y2 ==X3 +Ax + B.

 where A, B E K and 4A3 + 27B2 + 0. These points plus a point at infinity form an

 Abelian group when addition is suitably defined [32, p. 181]. The identity element of

 the group is the point at infinity, and the negative of (x, y) is (x, -y).

 Four cases arise when adding two points. If either is the identity, then their sum is

 the other point. If the points are negatives of one another, then their sum is the

 identity. If P1 = (xl, Yl) and P2 (x2, Y2) are two points on the curve where

 xi = x2, and neither is the identity, then their sum is P3 = (X3, y3) where

 m = (Y2-YA)/(X2-x1), X3=m2 - X1-X2,
 y3 = m(x1 - X3) -Y1 = m(x2 - X3) -Y2*

 Here m is the slope of a straight line passing through P1, P2, and -P3. The
 remaining case occurs when x1 = x2 but Yi / -Y2. By (7.1), this implies Yi = Y2, so

 the points are identical; one can use m = (3X2 + A)/(2y1) (the slope of the tangent

 line), with the above equations for X3 and y3.
 If K = GF(p) where p is prime, then the order of the group is between

 p + 1 - 21p and p + 1 + 2rp [32, p. 187] but varies with A and B. A major
 strength of ECM is that different curves are unlikely to have equal group orders, so
 ECM can be repeated (with a different curve) when it fails.

 D. V. Chudnovsky and G. V. Chudnovsky [8, Section 4] give several alternative

 parametrizations of elliptic curves.

 8. The Elliptic Curve Method of Factoring. Lenstra's elliptic curve method of
 factoring [15], [16] notes that although the ring of integers modulo N is not a field,

 unless N is prime, the same algebraic operations used to add two points over a field
 may be used in the ring until a noninvertible denominator is encountered. At that
 time, we will usually get a factor of N. He begins with a random elliptic curve and a

 random point P0 = (x0, yo) on the curve. We hope N = pq where the order of the
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 group modulo p (and hence the order of P0) has only small prime divisors. So

 compute P' = RPo = (xl, yl), where R is divisible by all primes below our bound
 B1. If all denominators are invertible, then Step 1 of ECM has been unsuccessful.
 Lenstra does not suggest a continuation. The methods of Subsection 4.1 are

 applicable if we set f(n) = Xn mod N, where nP' = (Xn, Y). With this selection, the
 costs of Step 2 in the p ? 1 methods and ECM are essentially equal.

 9. Other Continuations to p ? 1 and Elliptic Curve Methods.
 9.1. Avoiding a Table of Primes. Pollard's FFT continuation to the p - 1 method

 can be viewed as follows. Let

 (9.1.1) f SI {bumodN: 0 < u < w and GCD(u,w) =

 S2 = bVW mod N: [ BI/w I < v B2/w I .

 Then check if GCD(s1 - S2, N) > 1 for some s, E SI and S2 E S2. The algorithm
 of Subsection 4.1 can be viewed in this perspective if it is changed to test all
 differences f(vw) - f(u), not just those for which vw + u or vw - u is prime and
 (v, u) is in our list. Define

 (9.1.2) f SI = {f (u) mod N: 0 < u < w/2 and GCD(u, w) = I (9.1.2) S2 = f(vw) mod N: [ BI/w - 2 < v B2/w+ }

 The two sets called S2 have comparable sizes, but SI in (9.1.2) is only half as large

 as SI in (9.1.1).
 Sets SI and S2 in (9.1.2) have the form S1 = f(D1) mod N and S2 = f(D2)

 mod N, where D1 and D2 are sets of integers, and where every prime between B1
 and B2 divides some nonzero element of D1 ? D2. In (9.1.2), D2 is an arithmetic
 progression, and D1 is almost one but has selected terms omitted. We can reduce

 I D1 lI D2 1 (the potential number of comparisons) while keeping both I DI and I D2 1
 (and hence total memory) small, by using two sieves rather than one. Select two

 coprime moduli w, and w2 such that wlw2 << B2 is divisible by many low primes. Set

 VI = [BI/w2 - w1/21 and V2 = [B2/W2 + wl/2j. Let

 (9.13) DfD1 = {uwl < u< w2/2 and GCD(u, w2) = 1},
 (D2= {VW2: vI < v < v2 and GCD(v,w) = 1}.

 Another interesting choice is

 D1 = {2im: 0 < j < 2J}, D2 - {2Jm3km: 0 < k < K}

 for positive integers m, J and K where (J + 1)(K + 1) > (B2 - 1)/2. These IDII
 and ID2I are much larger than those in (9.1.3), since no sieving has been done, but
 any odd prime s will divide some nonzero element of D1 ? D2 if s - 1 <
 B2 GCD((s - 1)/2, m), not merely if s < B2. Many primes greater than B2 will
 qualify, even some greater than mB2. We are applying a miniature p - 1 algorithm
 in our search for s. Here, D1 and D2 are geometric rather than arithmetic
 progressions, so (4.1.3) does not apply, but all members of f(D1) and f(D2) can be
 evaluated with 2m(J + K) multiplications modulo N if f(n) = Vn(P').

 Brent [51 suggests a "birthday paradox" continuation, in which D1 = D2. Its
 elements are selected randomly, and one hopes for duplicates modulo s.
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 Define the polynomials (i = 1, 2)

 h,(x) =- (x - si) modN (si E SJ).
 We need the resultant of hi and h2 (or of h1h2 and its derivative). Schwartz [26, pp.
 705-707] gives an asymptotically fast resultant algorithm. There is a danger that

 multiple factors of N will appear at once if a single GCD with N is done at the end

 of the resultant computation.

 Another possibility is to evaluate GCD(hl(s2), N) for each s2 E S2. The FFT
 continuation uses this approach, taking advantage of the fact that S2 in (9.1.1) is a

 geometric progression, a property not shared by S2 in (9.1.2). But a polynomial of

 degree at most n - 1 can be evaluated at n points in O(n (log n)2) steps using other

 FFT algorithms [1, Chapter 8]. It remains to be determined whether this extra factor

 of log n will offset the reduced size of S1 when B1 and B2 are in the range of

 interest.

 Alternatively, we can precondition the coefficients of h,, as in Subsection 3.1, so it

 can be evaluated at an arbitrary s2 E S2 with about 2 deg h, multiplications modulo
 N, for a total cost of about 2 deg hI deg h 2 = 2 1S1 IS21 multiplications. Another way
 to precondition using only rational operations appears in [1, Exercise 12.36]; add the

 condition ru = m - / + 1 to its description.

 9.2. Using f(n) = Vg(n) mod N. If f satisfies the second condition of Subsection

 4.1 (with p - 1 = Qs replaced by an appropriate group equation), then so does F

 where F(n) = f(g(n)) and where g is an odd or even polynomial function with

 integer coefficients. This is because if s divides either vw + u, then s will divide one
 of g(vw) ? g(u). The advantage to using F is that a prime s > B2 may divide

 g(vw) ? g(u) even though s divides neither vw + u. This increases our chances of

 finding s and hence p, at the cost of increased time to compute values of F(vw) and
 F(u). If degg > 1, then our s might divide F(vw) - F(u) when vw + u are both

 composite, so this becomes more attractive when using one of the methods in

 Subsection 9.1. I suggest g be chosen so g(x) ? g(y) have many algebraic factors,

 such as g(x) = x n where n has many divisors.

 This approach requires evaluating f at points x, x + h, x + 2h.... of an arith-

 metic progression. For ECM, we can compute g(n)P as in (4.1.3) (unless we are

 using the alternative parametrization of Subsection 10.3.1). For the p - 1 method of

 factoring, successive values of Vg(n) can be found by separately computing
 bg(n) mod N and b-g(n) mod N in this manner. For the p + 1 method, let d = deg g.

 Define gi for 0 < i < d by (4.1.3). If we know Vg (n)/2 mod N and Ug, (n)/2 mod N
 for 0 < i < d, then 5d multiplications modulo N suffice to replace n by n + h, by
 (5.1). Another method defines

 N = (A - 2)/4X2 mod N, Wk = (Vk + XUk)/2 mod N,

 where X is arbitrary except that GCD(X, N) = 1. Then

 Vk =Wk + W-k mod N, XUk = Wk - W-k mod N,

 W.+k = WjWk + AVUJUk mod N, Wj -k = W-jW k + AA2Uj Uk mod N.

 For 0 < i < d, keep track of W+ g (Al) mod N and ciUg,(n) mod N where c,
 AXN mod N if i is even and ci A mod N if i is odd. Then [3.5dj multiplications
 modulo N suffice to replace n by n + h.
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 9.3. Can We Pair More than Two Primes? If Algorithm PAIR is replaced by an

 algorithm which generates triplets of primes, and if f is changed accordingly, then

 the algorithm in Subsection 4.1 will be speeded up 33%. I have been unable to do

 this.

 If f (x) -f (y) divides f (xn) - f (yn) whenever x, y, and n are integers, then

 GCD(f(xIx2) -f(x1y2) -f(y1x2) + f(Y1Y2), N)
 can be tested instead of separately testing

 GCD(f(x1)-f(y1),N) and GCD(f(x2)-f(Y2),N).

 If the pairs of primes can themselves be paired for this computation, then the

 number of GCDs with N will drop by half. This seems to require evaluating f at too

 many points to be worthwhile.

 10. Implementations. The author is preparing a table of factorizations [7] of

 Fibonacci numbers Fn for odd n < 999, and of Lucas numbers Ln for n < 500.
 Those tables were the primary testing grounds for these algorithms.

 If p > 5 is an odd primitive prime factor of Fn or Ln (meaning p1Fn (respectively

 pIL) but p + Fk and p + Lk if 0 < k < n), then p (5/p) (p75) mod2n. If
 51n, then p I mod 2n. Otherwise, we merely know p I mod 2n.

 Let N be a composite cofactor of a Fibonacci or Lucas number. The author found

 approximately 180 new factors of such N between 1983 and 1985, using these

 algorithms on primarily a VAX 11/780 and a CDC 7600. The Monte Carlo method
 was tried on approximately half of the entries, usually for about 30,000 function

 evaluations. Meanwhile either p - 1 or p + 1 was run against the same input

 number. Monte Carlo was less productive than p ? 1, and was abandoned once

 ECM was implemented. The elliptic curve and p + 1 methods were run on all
 composite entries in the tables. The programs used a variation of the algorithm in

 [17] * for arithmetic modulo N.

 10.1. Implementations of p + 1. The p - 1 and p + 1 methods were tried on each

 N, using increasing limits and various seeds. Williams [33] and Naur [19] had
 previously tried these methods. Most runs were made before ECM was discovered.

 The first and last runs of p + 1 used P0 23/11 mod N. Since A = PJ - 4

 45/121 mod N is 5 times a rational square, this will locate a factor p of N if

 p - (5/p) is highly composite. However p - (5/p) is known a priori to be divisible

 by 2n.

 The last p + 1 run used B1 = 2,000,000 and B2 = 100,000,000. Equation (9.1.3)

 was used with w1 = 221 and w2 = 2310. It used f(n) = Vg(n)(P), where

 g(n) = V6(n) = n6- 6n4 + 9n2 - 2.

 We wrote h, (of degree 12p(w2) = 240) as a product of 16 monic polynomials each
 of degree 15, and expanded each of the latter using Winograd's scheme (3.1.2). It

 took 21 multiplications modulo N to compute each value of f(vw2), and an
 additional 130 multiplications modulo N and one GCD with N to evaluate

 GCD(h1(f(vw2)), N) if GCD(v, 221) = 1.

 *Robert Baillie has kindly pointed out an error in [17]. In the fifth line of Section 2 on p. 520, change
 " modulo R " to " modulo b". Also change "R " to "b" in the first statement within the for loop on p. 520.
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 The use of f(n) = V rather than f(n) = Vn occasionally produces surprises,
 such as the factor 124,205,327,610,431 of 3281 - 1 despite B2= 2,000,000, be-

 cause 21,488,179 (the only large divisor of p - 1) also divides V3(2310 516) +

 V3(221 733). Such successes seem rare, and did not occur during the final p + 1

 run on the Fibonacci and Lucas numbers.

 The largest factors found by p ? 1 were

 142,240,444,249,423,907,190,721 of F537,

 6,563,589,514,883,537,474,323,387 of L442,

 619,802,607,259,514,583,330,235,693,729 of F971,

 for which

 p -I =2 6 *3 -5 -72- 23 - 179 -1693 * 6311 * 68741623 (F537)
 2

 p + 1 = 22 13 17 - 47 * 2459 69029 * 255877 3637223 (L442)

 p-1 =25 *3 13 23 * 971 25801 689851 1089469 * 1146793 (F971).

 The 30-digit factor of F971 was found in Step 1. Silverman found a 26-digit factor of

 L431 via p - 1.
 10.2. Implementation of Monte Carlo. Brent and Pollard [4] recommend F(x) =

 X m + 1 if the factors of N are known to be congruent to 1 modulo m. They demonstrate

 by finding the previously unknown factor 1,238,926,361,552,897 of 2256 + 1 using

 m = 1024. Use of this polynomial seems to reduce the expected number of function

 evaluations before finding a prime p by (GCD(p - 1, m) - 1)1/2. Gold and Sattler
 [11] report a similar result, without the second "- 1" term.

 When 51n, we used F(x) = xm + 1. The selection of m was sometimes 120n,
 sometimes 5040n, and sometimes 16 - 9 . 5 . 7 - 11 - 13n.

 For the case where 5 + n, consider F(x) = Vm(X) + c where 2nIm. Let p be a
 prime satisfying p + 1 mod 2n. An argument resembling that in [4] suggests that
 this reduces the expected number of function evaluations before finding p by a

 factor of

 ((GCD(p - 1, m) + GCD(p + 1, m) - 2)/2)1/2 ((2n + 2 - 2)/2)n/2.=

 To utilize Algorithm MCF of Subsection 3.2, we can rewrite F as

 (10.2.1) F(x) = Vm72(V2(X)) + C = Vm72(X2 - 2) + c = G(X2),
 where G(x) = Vm,2(X - 2) + c. Actually, we used F(x) = Vm72(X2), with m as in

 the 51n case. Algorithm CFRC of [18] was used (along with the factorization of
 m/2) to find a fast way to evaluate F(x).

 The author found only ten Fibonacci and Lucas factors with this algorithm before

 abandoning it in favor of ECM. The largest such factor was 17,672,296,363,133,261

 of F893.

 10.3. Effectiveness of ECM. The author ran ECM several times, using approxi-

 mately 50 total curves for each N. In Step 2, f (n) is the x-coordinate of nP.
 ECM found over 100 factors missed by other methods (albeit using considerably

 more computer time). The largest Fibonacci and Lucas factors found by ECM were

 2,442,882,935,400,038,849,127,521 of F517,

 10,245,029,712,795,120,034,405,043 of L386,

 12,158,771,296,959,377,863,294,133 of F563,

 5 ,890,430,821 ,204,665 ,088 ,535,469,913 of F869.
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 The factor of L386 was found with B1 = 106; for the others, B1 was between

 50000 and 100000. In each case, B2 was about 60 times as large.

 The author subsequently implemented the parametrization in Subsection 10.3.1,

 and tackled twenty-five composite entries of the form 128_ 1 from [6]. Previous

 ECM runs, primarily by Silverman, had removed their small factors. Using ap-

 proximately 80 curves per number, with B1 varying from 100000 to 500000, I found

 eleven new factors of 20 to 24 digits, but was disappointed to find no larger ones.

 After two partially factored entries were completed by Silverman using the methods

 of [30], seventeen composite entries of 76 to 136 digits remained. Silverman's runs
 revealed I had missed a 22-digit factor of 1273 + 6 * 1236 + 1.

 The author then returned to the Lucas numbers, using the parametrization in

 Subsection 10.3.1. He found three huge factors:

 1,090,414,335,383,168,463,561,145,167,623 of L412,

 5,373,430,329,122,468,821,883,671,012,169 of L482,

 227,693,725,298,545,340,302,283,668,318,476,481 of L464.

 Both 31-digit factors were found using B1 = 175000. The 36-digit factor was found

 using B1 = 225000. In each case, B2 was 40 times as large as B1.

 10.3.1. Elliptic Curve Parametrization. The author's original implementation of

 ECM used affine coordinates, as in (7.1). Adding two points takes 2 multiplications,

 6 additions, and 1 division when the points are distinct, and slightly more when they

 are equal. Each division requires a multiplication and an inversion. When working

 over several curves, the program used a scheme similar to (1.2) to do all the

 inversions at once, since (1/x) = y(l/xy) and (l/y) = x(l/xy). This reduces the

 asymptotic cost of an inversion to that of 3 multiplications. If one uses a method

 requiring log2 n duplications of points and 0.25 1og2 n additions or subtractions of

 points when computing nP from P, then the asymptotic cost of this method is about

 (7 + 6(0.25)) 1og2 n = 8.5 log2 n multiplications per curve. However, one must run

 several curves at once to achieve this performance. Furthermore, this inversion

 algorithm is not suitable for parallel or distributed processing.

 The author later discovered an alternative parametrization that requires no

 inversions during Step 1, once the necessary constants have been computed. It

 resembles (4.18i) and (4.18ii) in [8] and uses the equation

 (10.3.1.1) By2 = X3 + AX2 + X

 for some A and B.

 Let P1 = (xl, y1) and P2 = (x2, Y2) be two points on the curve, with xl + x2 and

 x1x2 # 0. Then P1 + P2 = (X3, y3) satisfies

 X3 = B[(y1 - y2)/(xl - x2)]2- A - x -X2,

 X3(X - x2)2 = B(y1- Y2)2 -(A + x1 + x2)(xl -X2)

 = -2Byjy2 + xIx2(xl + x2 + 2A) + xi + x2

 = B(x2y1 _- Xy2)2/XJX2-

 Similarly, P1 - P2 = (X4, y4) satisfies

 X4(X1 - X2)2 = B(X2Y1 + XlY2)2/xIx2.
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 Multiply these equations and use (10.3.1.1) to obtain

 X3X4(X1 -X2) = (X1X2-1)

 after division by (xl - x2)2. This equation remains valid if xIx2 = 0. If P1 = P2, a
 similar derivation yields

 4x x3(x2 + Ax1 + 1) = (X2 - 1)2.

 These equations reference only the xi, not the yi. Fortunately, ECM does not
 require us to compute the yi.

 Let P be an arbitrary point on the curve, and let the x-coordinate of nP be the

 rational number Xn/Zn. From the ratios (Xmn Zn-,n), (Xrn: Zrn), and (Xn: Zn)
 one can compute the ratio (Xrn + n: Zn ? n) via the addition formula

 XM+n <- Zm-n(XmXn - ZmZn )2 Zn- Xmrn(XmZn - ZnXn)2
 if mP + nP, and via the duplication formula

 (X (X2 _ Z2)2 <-Z 4XnZn(X2 + AXnZn + Zn2)
 if m = n. The addition formula is valid everywhere if we allow GCD(Xn, Zn, N) to
 exceed 1. Once that condition occurs, it will persist, so we can periodically test

 GCD(Zn, N).
 The addition formula seems to require 8 multiplications and the duplication

 formula to require 6 multiplications. The costs drop if we store the ratios

 (Xm: Zm: Xrn + Zrn: Xm - Zm) and rewrite the formulae as (the right sides of the
 addition formula have been multiplied by 4)

 Xr~n *Zm[(Xm - ZZm)(Xn + Zn) +(Xm + Zm)(Xn Zn)]2,

 Zrn~n *-Xm[(Xm - Zm)(Xn + Zn) _(Xm + Zm)(Xn Zn)] 2,
 and

 4 Xn Zn = ( Xn ? Zn)2 (Xn Zn)2, X2n < (Xn + Zn)2(Xn - Zn)2,

 Z2n (4XnZn)((Xn -Zn)2 +((A + 2)/4)(4XnZn)).

 Note that we can precompute (A + 2)/4. These formulae require 6 multiplications
 and 4 additions to add two points whose difference is known, and 5 multiplications
 and 4 additions to duplicate a point.

 Using the binary method, we can compute nP from P with 11 1og2 n multiplica-

 tions and 8 log2 n additions, by repeatedly computing either (2mP, (2m + 1)P) or

 ((2m + 1)P, (2m + 2)P) from (mP, (m + 1)P). If one starts with X1 = 2 and

 Zi = 1, then this cost reduces to 9 log2 n multiplications and 9 log2 n additions.
 We can do almost as well for arbitrary X1 and Z1 by noticing that these equations

 functionally resemble (5.2). The methods of [18] may be used to evaluate nP from P

 with about 1.55log2n addition or duplication steps, which corresponds to about
 9.3 log2 n multiplications and 6.2 log2 n additions. In practice, both this method and

 the binary method (with X1/Z1 = 2) use about 130,000 multiplications for Step 1 to
 reach 10,000. The binary method has a simpler control structure and a greater

 percentage of squarings (44% vs. 34%) but requires 45% more additions. In the

 binary method, 11% of the multiplications can be replaced by additions if (A + 2)/4
 is sufficiently small.
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 One can use this parametrization during Step 1 and the Weierstrass parametri-

 zation during Step 2, by arbitrarily setting y = 1 at the end of Step 1, using

 (10.3.1.1) to compute B, and applying a linear transformation to obtain (7.1).
 10.3.2. Selection of Elliptic Curves and Initial Points. ECM lets one pick which

 curve to use. Naturally, one prefers a curve whose group order has some known

 prime divisors, since the group order is more likely to be highly composite. When

 using the Weierstrass equation (7.1), each linear factor x - x0 of X3 + Ax + B

 corresponds to a point (x0, 0) of order 2 on the curve. If the cubic has three linear

 factors, then the group will have a subgroup isomorphic to Z2 X Z2. Therefore, the

 group modulo each prime divisor of N will have order divisible by 4. For example,

 one can select three distinct squares s 2, S and s 2, and use the point

 (xl, Yi) = ((s2 + s 2 + s 2)/3, s s2s3)

 on the curve

 (X + s~-2 x(X + S2 - X1)(X + S2 - X1) = y2.

 When using (10.3.1.1), it is desirable to use B = A + 2 so that the point (1, 1) will

 have order 4. We also desire A = k + 1/k for some k, so that there will be three

 points of order 2. We can achieve both of these (and hence have a group order

 divisible by 8) providing we can select xl = X1/Z1 where (k + xj)(k + l/xl) is a
 perfect square. This will hold if k = (X2 - M2)/(x1(m2 - 1)) for some m. To

 prevent degenerate cases such as division by zero, and to ensure that our starting

 point is not in the known subgroup, one needs

 mxI(x2 - )(m2 - 2)(x- -2 m4) 0 0.

 In particular, we can select xl = 2 and m = 3, 4,5 ....

 When - 1 is a quadratic residue, we can obtain a curve whose group order is

 divisible by 16 if we do not insist that xl = 2. The point (x, y) has order 4 if

 x2 + 2kx + 1 = 0 and (1 + k)y2 = (1 - k)x2. Such a rational point exists if -1

 and k2 - 1 are quadratic residues. The latter condition holds if (X2 - 1)(xj2 - mi4)
 is a perfect square. One nontrivial solution is x1 = m2 + 2 where m = (t2 - 3)/2t

 for t = 4, 5, 6....

 Let p be a prime which does not divide B(A + 2)(A - 2). Suyama [31] observes

 that the order of the group associated with (10.3.1.1) modulo p will always be

 divisible by 4. If B(A + 2) is a quadratic residue, then the point (1, /(A + 2)/B)

 has order 4. If B(A - 2) is a quadratic residue, then the point (- 1, /(A - 2)/B )

 has order 4. If (A + 2)(A - 2) is a quadratic residue, then the cubic has three linear

 factors, and again there is a subgroup of order 4.

 Suyama next notes that if

 A = (-3a4 - 6a2 + 1)/4a3, B = (a -1)2/4ab,

 where a, b E Q and ab(a2 - 1)(9a2 - 1) A 0, then the point (a, b) has order 3.

 implying the group order is divisible by 12. It remains to select xI; we require that

 4a3x3 - (3a4 + 6a2 _ 1)x2 + 4a3x1
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 be a perfect square. Suyama suggests x1 = 3a/4, where 9 - 6a2 is a perfect square

 (e.g., a = 6u/(u2 + 6) where u is rational). Alternative initial points are x1 = a3

 where 4a2 + 5 is a perfect square, and x1 = (3a2 + 1)/4a, where 3a2 + 1 is a

 perfect square.

 There will be a torsion group of order 12 over Q if (1 - a)(1 + 3a), and hence

 B(A + 2) is a perfect square. Set a = (U2 - 4u - 12)/(u2 + 12u - 12); then both

 3a2 + 1 and (1 - a)(1 + 3a) will be perfect squares whenever u3 - 12u is a perfect

 square (e.g., u = 4, 54, 49/4, 2166/625, 14884/1089). Avoid u = 0, -2, 6 since

 they lead to degenerate cases. The explicit torsion group seems to give a 50% chance

 that B(A + 2), B(A - 2) and (A - 2)(A + 2) will all be quadratic residues (ensur-

 ing the group order is divisible by 24), compared with a 25% chance if we know

 nothing about A and B.
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