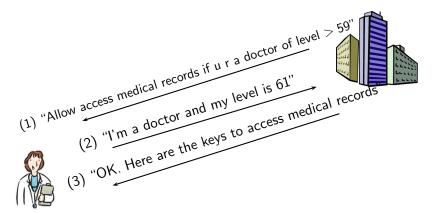
Efficient and Privacy-Preserving Enforcement of Attribute-Based Access Control

Ning Shang ^{1,3} Federica Paci^{1,2} Elisa Bertino¹

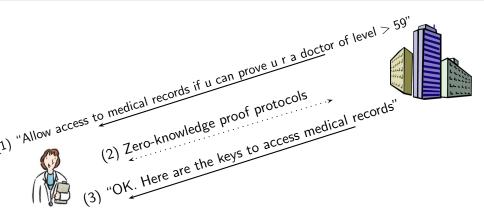

¹Purdue University, ²University of Trento, ³Microsoft

April, 2010

Attribute-based access control - Approach 0

Without privacy

Without privacy

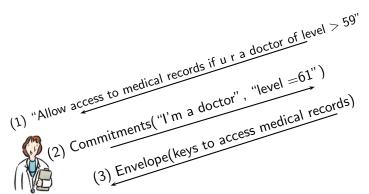


SP knows a lot about user's involved credentials

Attribute-based access control - Approach 1

Privacy-preserving via ZKPK

Privacy-preserving via ZKPK



SP knows whether the user's credentials satisfy the requirements or not

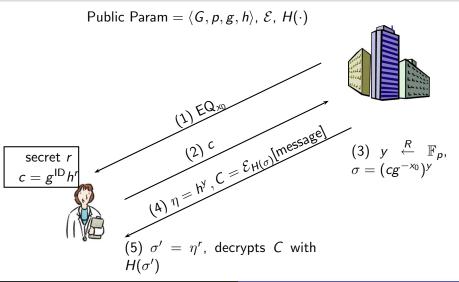
Attribute-based access control - Approach 2

Privacy-preserving via OCBE

Privacy-preserving via OCBE

User can open the envelope iff its credentials satisfy the policy SP does not know the outcome of envelope opening

OCBE Overview


OCBE: Oblivious Commitment-Based Envelope.¹

¹ Jiangtao Li and Ninghui Li. OACerts: Oblivious attribute certificates. *IEEE Transactions on Dependable and Secure Computing*, 3(4):340-352, 2006.

OCBE cryptographic building blocks

- $G = \langle g \rangle$: finite cyclic group of order p in which the computationally Diffie-Hellman problem is hard
- Pedersen commitment: $c = g^x h^r$, where $g, h \in G, r \stackrel{R}{\leftarrow} \mathbb{F}_p$
- ullet \mathcal{E}_K : symmetric key encryption algorithm with key K
- $H(\cdot)$: cryptographic hash function

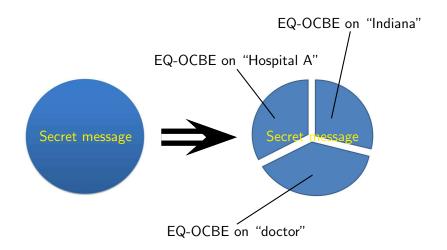
EQ-OCBE: equality predicate

Other OCBE's

GE-OCBE, LE-OCBE, . . . are OCBE protocols for \geq , \leq , . . . predicates. They are performed in a similar fashion as EQ-OCBE, but generally more expensive.

OCBE features

- Security & privacy: the identity tokens (commitments) are unconditionally hiding and computationally binding
- X.509 integration: the identity tokens can be put into X.509v3 certificate extension fields


Multiple attributes specified in policy

Conjunction of conditions

"Allow access if you are a doctor of Hospital A in Indiana"

Multiple attributes: a straightforward solution

This approach works, but...

It is not very efficient

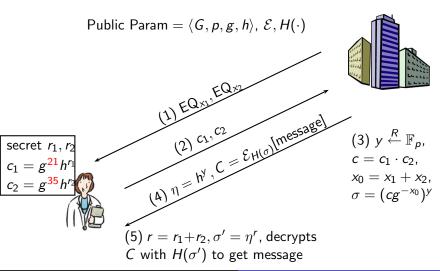
communication and computation costs increase in proportion to the number of specified attributes

Question

Can we do better?

Answer

Agg-EQ-OCBE: Aggregate OCBE protocol for equality predicates


- handles multiple equality conditions at the same time, without significantly increasing computational cost
- also requires less bandwidth

Agg-EQ-OCBE ideas

Techniques to improve the performance

- make use of the algebraic structure and operations in EQ-OCBE
- trade more expensive exponentiation operations for less costly addition and multiplication operations

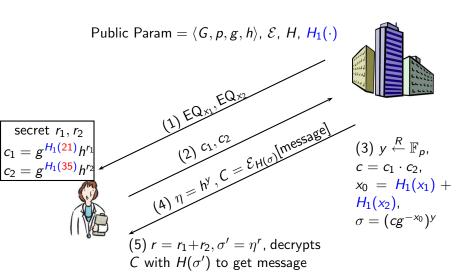
Agg-EQ-OCBE illustration

One problem

Collision

Owners of identity token sets

$$S_1 = \left\{c_1 = g^{21}h^{r_1}, c_2 = g^{35}h^{r_2}\right\} \text{ and } S_2 = \left\{c_3 = g^{18}h^{r_3}, c_4 = g^{38}h^{r_4}\right\}$$

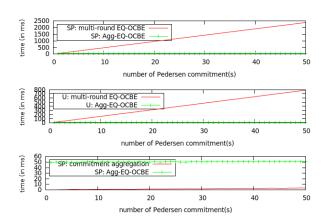

will both open the envelope.

$$21 + 35 = 56 = 18 + 38$$

Solution

Cryptographic hash

Aggregate EQ-OCBE


Underlying intractability assumptions

• Group 2nd-preimage resistant hash $\widetilde{H}(\cdot)$ Given (x_1, \ldots, x_m) , it is hard to find another tuple (y_1, \ldots, y_n) such that

$$\sum_{i=1}^m \widetilde{H}(x_i) = \sum_{i=1}^n \widetilde{H}(y_i)$$

• Computational Diffie-Hellman problem Given g^a, g^b , it is hard to compute g^{ab}

Experimental results

Future work

- More application scenarios
- Aggregate GE-OCBE and other OCBE protocols aggregation works in certain cases, e.g., when sum of attribute values needs to be \geq a threshold value

Summary

- Privacy-preserving attribute-based access control concepts and approaches
- OCBE overview
- Aggregate EQ-OCBE
- Experimental data

The End

Thank you!

Questions?

nshang@cs.purdue.edu